Impacts of the large increase in international ship traffic 2000-2007 on tropospheric ozone and methane.
نویسندگان
چکیده
The increase in civil world fleet ship emissions during the period 2000-2007 and the effects on key tropospheric oxidants are quantified using a global Chemical Transport Model (CTM). We estimate a substantial increase of 33% in global ship emissions over this period. The impact of ship emissions on tropospheric oxidants is mainly caused by the relatively large fraction of NOx in ship exhaust. Typical increases in yearly average surface ozone concentrations in the most impacted areas are 0.5-2.5 ppbv. The global annual mean radiative forcing due to ozone increases in the troposphere is 10 mWm(-2) over the period 2000-2007. We find global average tropospheric OH increase of 1.03% over the same period. As a result of this the global average tropospheric methane concentration is reduced by approximately 2.2% over a period corresponding to the turnover time. The resulting methane radiative forcing is -14 mWm(-2) with an additional contribution of -6 mWm(-2) from methane induced reduction in ozone. The net forcing of the ozone and methane changes due to ship emissions changes between 2000 and 2007 is -10 mWm(-2). This is significant compared to the net forcing of these components in 2000. Our findings support earlier observational studies indicating that ship traffic may be a major contributor to recent enhancement of background ozone at some coastal stations. Furthermore, by reducing global mean tropospheric methane by 40 ppbv over its turnover time it is likely to contribute to the recent observed leveling off in global mean methane concentration.
منابع مشابه
The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY
To estimate the impact of emissions by road, aircraft and ship traffic on ozone and OH in the present-day atmosphere six different atmospheric chemistry models have been used. Based on newly developed global emission inventories for road, ship and aircraft emission data sets each model performed sensitivity simulations reducing the emissions of each transport sector by 5%. The model results ind...
متن کاملStudy of tropospheric ozone concentration trend of Kermanshah by meteorological parameter and ozone precursor and OMI images
Abstract: Clean air is a necessity for human well-being and health. Air pollution is a major threat to humans and other organisms and is considered as one of the environmental challenges. Today, with the increase in air pollution, the need to know more about the causes of its occurrence has been raised. The various consequences of air pollution have made air quality monitoring and control inev...
متن کاملMulti-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030
The global impact of shipping on atmospheric chemistry and radiative forcing, as well as the associated uncertainties, have been quantified using an ensemble of ten state-of-the-art atmospheric chemistry models and a predefined set of emission data. The analysis is performed for present-day conditions (year 2000) and for two future ship emission scenarios. In one scenario ship emissions stabili...
متن کاملGlobal impact of road traffic emissions on tropospheric ozone
Road traffic is one of the major anthropogenic emission sectors for NOx, CO and NMHCs (non-methane hydrocarbons). We applied ECHAM4/CBM, a general circulation model coupled to a chemistry module, which includes higher hydrocarbons, to investigate the global impact of 1990 road traffic emissions on the atmosphere. Improving over previous global modelling studies, which concentrated on road traff...
متن کاملThe Evaluation of Tropospheric Ozone Formation in the Downwind of the South Pars Industrial Zone
Hydrocarbon Processing Industries (HPIs) emit large amounts of highly reactive hydrocarbons and Nitrogen Oxides to the atmosphere. Such simultaneous emissions of ozone precursors result in rapid and high yields ozone (O3) formation downwind. The climate of the Middle East has been shown to be favorable for O3 formation in summer. There are also vast activities in processing oil and gas in this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 44 7 شماره
صفحات -
تاریخ انتشار 2010